Cargando…

In Silico Design of a New Multi-Epitope Peptide-Based Vaccine Candidate Against Q Fever

Novel types of the vaccines with high immunogenicity and low risks, including epitope-based vaccines, are sought. Among zoonotic disease, Q fever caused by Coxiella burnetii is an important target due to numerous outbreaks and the pandemic potential. Here we present a synthetic multi-epitope vaccine...

Descripción completa

Detalles Bibliográficos
Autores principales: Jabarzadeh, S., Samiminemati, A., Zeinoddini, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pleiades Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682035/
https://www.ncbi.nlm.nih.gov/pubmed/34955559
http://dx.doi.org/10.1134/S0026893321050150
Descripción
Sumario:Novel types of the vaccines with high immunogenicity and low risks, including epitope-based vaccines, are sought. Among zoonotic disease, Q fever caused by Coxiella burnetii is an important target due to numerous outbreaks and the pandemic potential. Here we present a synthetic multi-epitope vaccine against Coxiella burnetii. This vaccine was developed using immunoinformatics approach. Antigenic proteins were studied, and five T cell epitopes were selected. Antigenicity, allergenicity, and toxicity of the selected epitopes were evaluated using the VaxiJen 2.0, AllerTOP, and ToxinPred servers, respectively. Selected epitopes were joined in a peptide sequence, with the cholera toxin B subunit (CTXB) as an adjuvant. The affinity of the proposed vaccine to MHC I and II molecules was measured in a molecular docking study. Resultant vaccine has high antigenicity, stability, and a half-life compatible with utilization in vaccination programs. In conclusion, the validated epitope sequences may be used as a potential vaccine to ensure protection against Q fever agent.