Cargando…
MLG: multilayer graph clustering for multi-condition scRNA-seq data
Single-cell transcriptome sequencing (scRNA-seq) enabled investigations of cellular heterogeneity at exceedingly higher resolutions. Identification of novel cell types or transient developmental stages across multiple experimental conditions is one of its key applications. Linear and non-linear dime...
Autores principales: | Lu, Shan, Conn, Daniel J, Chen, Shuyang, Johnson, Kirby D, Bresnick, Emery H, Keleş, Sündüz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682753/ https://www.ncbi.nlm.nih.gov/pubmed/34581807 http://dx.doi.org/10.1093/nar/gkab823 |
Ejemplares similares
-
Debiased personalized gene coexpression networks for population-scale scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2023) -
dropClust: efficient clustering of ultra-large scRNA-seq data
por: Sinha, Debajyoti, et al.
Publicado: (2018) -
Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
por: Song, Jia, et al.
Publicado: (2020) -
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019) -
SpaGE: Spatial Gene Enhancement using scRNA-seq
por: Abdelaal, Tamim, et al.
Publicado: (2020)