Cargando…
CoCoNet—boosting RNA contact prediction by convolutional neural networks
Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase p...
Autores principales: | Zerihun, Mehari B, Pucci, Fabrizio, Schug, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682773/ https://www.ncbi.nlm.nih.gov/pubmed/34871451 http://dx.doi.org/10.1093/nar/gkab1144 |
Ejemplares similares
-
Evaluating DCA-based method performances for RNA contact prediction by a well-curated data set
por: Pucci, Fabrizio, et al.
Publicado: (2020) -
Significant interarm blood pressure difference predicts cardiovascular risk in hypertensive patients: CoCoNet study
por: Kim, Su-A, et al.
Publicado: (2016) -
Concurrent Conditional Clustering of Multiple Networks: COCONETS
por: Kleessen, Sabrina, et al.
Publicado: (2014) -
Significant interarm blood pressure difference predicts cardiovascular risk in hypertensive patients: CoCoNet study: Erratum
Publicado: (2016) -
Deciphering enhancer sequence using thermodynamics-based models and convolutional neural networks
por: Dibaeinia, Payam, et al.
Publicado: (2021)