Cargando…
The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme
SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682786/ https://www.ncbi.nlm.nih.gov/pubmed/34850141 http://dx.doi.org/10.1093/nar/gkab1160 |
_version_ | 1784617297104601088 |
---|---|
author | Walker, Alexander P Fan, Haitian Keown, Jeremy R Knight, Michael L Grimes, Jonathan M Fodor, Ervin |
author_facet | Walker, Alexander P Fan, Haitian Keown, Jeremy R Knight, Michael L Grimes, Jonathan M Fodor, Ervin |
author_sort | Walker, Alexander P |
collection | PubMed |
description | SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5′ capping of viral RNAs. The formation of the 5′ 7-methylguanosine (m(7)G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5′ triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5′ end of viral RNA via a 5′ to 5′ triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2. |
format | Online Article Text |
id | pubmed-8682786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-86827862021-12-20 The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme Walker, Alexander P Fan, Haitian Keown, Jeremy R Knight, Michael L Grimes, Jonathan M Fodor, Ervin Nucleic Acids Res Nucleic Acid Enzymes SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5′ capping of viral RNAs. The formation of the 5′ 7-methylguanosine (m(7)G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5′ triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5′ end of viral RNA via a 5′ to 5′ triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2. Oxford University Press 2021-11-29 /pmc/articles/PMC8682786/ /pubmed/34850141 http://dx.doi.org/10.1093/nar/gkab1160 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nucleic Acid Enzymes Walker, Alexander P Fan, Haitian Keown, Jeremy R Knight, Michael L Grimes, Jonathan M Fodor, Ervin The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme |
title | The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme |
title_full | The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme |
title_fullStr | The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme |
title_full_unstemmed | The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme |
title_short | The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme |
title_sort | sars-cov-2 rna polymerase is a viral rna capping enzyme |
topic | Nucleic Acid Enzymes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682786/ https://www.ncbi.nlm.nih.gov/pubmed/34850141 http://dx.doi.org/10.1093/nar/gkab1160 |
work_keys_str_mv | AT walkeralexanderp thesarscov2rnapolymeraseisaviralrnacappingenzyme AT fanhaitian thesarscov2rnapolymeraseisaviralrnacappingenzyme AT keownjeremyr thesarscov2rnapolymeraseisaviralrnacappingenzyme AT knightmichaell thesarscov2rnapolymeraseisaviralrnacappingenzyme AT grimesjonathanm thesarscov2rnapolymeraseisaviralrnacappingenzyme AT fodorervin thesarscov2rnapolymeraseisaviralrnacappingenzyme AT walkeralexanderp sarscov2rnapolymeraseisaviralrnacappingenzyme AT fanhaitian sarscov2rnapolymeraseisaviralrnacappingenzyme AT keownjeremyr sarscov2rnapolymeraseisaviralrnacappingenzyme AT knightmichaell sarscov2rnapolymeraseisaviralrnacappingenzyme AT grimesjonathanm sarscov2rnapolymeraseisaviralrnacappingenzyme AT fodorervin sarscov2rnapolymeraseisaviralrnacappingenzyme |