Cargando…

Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams

Autonomous experimentation enabled by artificial intelligence offers a new paradigm for accelerating scientific discovery. Nonequilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery. We demonstrate a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ament, Sebastian, Amsler, Maximilian, Sutherland, Duncan R., Chang, Ming-Chiang, Guevarra, Dan, Connolly, Aine B., Gregoire, John M., Thompson, Michael O., Gomes, Carla P., van Dover, R. Bruce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682983/
https://www.ncbi.nlm.nih.gov/pubmed/34919429
http://dx.doi.org/10.1126/sciadv.abg4930
_version_ 1784617319432978432
author Ament, Sebastian
Amsler, Maximilian
Sutherland, Duncan R.
Chang, Ming-Chiang
Guevarra, Dan
Connolly, Aine B.
Gregoire, John M.
Thompson, Michael O.
Gomes, Carla P.
van Dover, R. Bruce
author_facet Ament, Sebastian
Amsler, Maximilian
Sutherland, Duncan R.
Chang, Ming-Chiang
Guevarra, Dan
Connolly, Aine B.
Gregoire, John M.
Thompson, Michael O.
Gomes, Carla P.
van Dover, R. Bruce
author_sort Ament, Sebastian
collection PubMed
description Autonomous experimentation enabled by artificial intelligence offers a new paradigm for accelerating scientific discovery. Nonequilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery. We demonstrate accelerated exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA). SARA integrates robotic materials synthesis using lateral gradient laser spike annealing and optical characterization along with a hierarchy of AI methods to map out processing phase diagrams. Efficient exploration of the multidimensional parameter space is achieved with nested active learning cycles built upon advanced machine learning models that incorporate the underlying physics of the experiments and end-to-end uncertainty quantification. We demonstrate SARA’s performance by autonomously mapping synthesis phase boundaries for the Bi(2)O(3) system, leading to orders-of-magnitude acceleration in the establishment of a synthesis phase diagram that includes conditions for stabilizing δ-Bi(2)O(3) at room temperature, a critical development for electrochemical technologies.
format Online
Article
Text
id pubmed-8682983
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-86829832021-12-29 Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams Ament, Sebastian Amsler, Maximilian Sutherland, Duncan R. Chang, Ming-Chiang Guevarra, Dan Connolly, Aine B. Gregoire, John M. Thompson, Michael O. Gomes, Carla P. van Dover, R. Bruce Sci Adv Physical and Materials Sciences Autonomous experimentation enabled by artificial intelligence offers a new paradigm for accelerating scientific discovery. Nonequilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery. We demonstrate accelerated exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA). SARA integrates robotic materials synthesis using lateral gradient laser spike annealing and optical characterization along with a hierarchy of AI methods to map out processing phase diagrams. Efficient exploration of the multidimensional parameter space is achieved with nested active learning cycles built upon advanced machine learning models that incorporate the underlying physics of the experiments and end-to-end uncertainty quantification. We demonstrate SARA’s performance by autonomously mapping synthesis phase boundaries for the Bi(2)O(3) system, leading to orders-of-magnitude acceleration in the establishment of a synthesis phase diagram that includes conditions for stabilizing δ-Bi(2)O(3) at room temperature, a critical development for electrochemical technologies. American Association for the Advancement of Science 2021-12-17 /pmc/articles/PMC8682983/ /pubmed/34919429 http://dx.doi.org/10.1126/sciadv.abg4930 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Ament, Sebastian
Amsler, Maximilian
Sutherland, Duncan R.
Chang, Ming-Chiang
Guevarra, Dan
Connolly, Aine B.
Gregoire, John M.
Thompson, Michael O.
Gomes, Carla P.
van Dover, R. Bruce
Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams
title Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams
title_full Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams
title_fullStr Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams
title_full_unstemmed Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams
title_short Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams
title_sort autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682983/
https://www.ncbi.nlm.nih.gov/pubmed/34919429
http://dx.doi.org/10.1126/sciadv.abg4930
work_keys_str_mv AT amentsebastian autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT amslermaximilian autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT sutherlandduncanr autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT changmingchiang autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT guevarradan autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT connollyaineb autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT gregoirejohnm autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT thompsonmichaelo autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT gomescarlap autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams
AT vandoverrbruce autonomousmaterialssynthesisviahierarchicalactivelearningofnonequilibriumphasediagrams