Cargando…
A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia
Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. A source of damage to Fe-S clusters is cuprous (Cu(1+)) ions. Since histone H3 enzymatically produces Cu(1+) for copper-dependent functions, we...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682991/ https://www.ncbi.nlm.nih.gov/pubmed/34919435 http://dx.doi.org/10.1126/sciadv.abj9889 |
_version_ | 1784617321313075200 |
---|---|
author | Campos, Oscar A. Attar, Narsis Cheng, Chen Vogelauer, Maria Mallipeddi, Nathan V. Schmollinger, Stefan Matulionis, Nedas Christofk, Heather R. Merchant, Sabeeha S. Kurdistani, Siavash K. |
author_facet | Campos, Oscar A. Attar, Narsis Cheng, Chen Vogelauer, Maria Mallipeddi, Nathan V. Schmollinger, Stefan Matulionis, Nedas Christofk, Heather R. Merchant, Sabeeha S. Kurdistani, Siavash K. |
author_sort | Campos, Oscar A. |
collection | PubMed |
description | Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. A source of damage to Fe-S clusters is cuprous (Cu(1+)) ions. Since histone H3 enzymatically produces Cu(1+) for copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3–mediated Cu(1+) toxicity is a major determinant of cellular functional pool of Fe-S clusters. Inadequate Fe-S cluster supply, due to diminished assembly as occurs in Friedreich’s ataxia or defective distribution, causes severe metabolic and growth defects in Saccharomyces cerevisiae. Decreasing Cu(1+) abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster–dependent metabolism and growth. Our findings reveal an interplay between chromatin and mitochondria in Fe-S cluster homeostasis and a potential pathogenic role for histone enzyme activity and Cu(1+) in diseases with Fe-S cluster dysfunction. |
format | Online Article Text |
id | pubmed-8682991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86829912021-12-29 A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia Campos, Oscar A. Attar, Narsis Cheng, Chen Vogelauer, Maria Mallipeddi, Nathan V. Schmollinger, Stefan Matulionis, Nedas Christofk, Heather R. Merchant, Sabeeha S. Kurdistani, Siavash K. Sci Adv Biomedicine and Life Sciences Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. A source of damage to Fe-S clusters is cuprous (Cu(1+)) ions. Since histone H3 enzymatically produces Cu(1+) for copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3–mediated Cu(1+) toxicity is a major determinant of cellular functional pool of Fe-S clusters. Inadequate Fe-S cluster supply, due to diminished assembly as occurs in Friedreich’s ataxia or defective distribution, causes severe metabolic and growth defects in Saccharomyces cerevisiae. Decreasing Cu(1+) abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster–dependent metabolism and growth. Our findings reveal an interplay between chromatin and mitochondria in Fe-S cluster homeostasis and a potential pathogenic role for histone enzyme activity and Cu(1+) in diseases with Fe-S cluster dysfunction. American Association for the Advancement of Science 2021-12-17 /pmc/articles/PMC8682991/ /pubmed/34919435 http://dx.doi.org/10.1126/sciadv.abj9889 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Campos, Oscar A. Attar, Narsis Cheng, Chen Vogelauer, Maria Mallipeddi, Nathan V. Schmollinger, Stefan Matulionis, Nedas Christofk, Heather R. Merchant, Sabeeha S. Kurdistani, Siavash K. A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia |
title | A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia |
title_full | A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia |
title_fullStr | A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia |
title_full_unstemmed | A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia |
title_short | A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia |
title_sort | pathogenic role for histone h3 copper reductase activity in a yeast model of friedreich’s ataxia |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8682991/ https://www.ncbi.nlm.nih.gov/pubmed/34919435 http://dx.doi.org/10.1126/sciadv.abj9889 |
work_keys_str_mv | AT campososcara apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT attarnarsis apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT chengchen apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT vogelauermaria apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT mallipeddinathanv apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT schmollingerstefan apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT matulionisnedas apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT christofkheatherr apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT merchantsabeehas apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT kurdistanisiavashk apathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT campososcara pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT attarnarsis pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT chengchen pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT vogelauermaria pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT mallipeddinathanv pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT schmollingerstefan pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT matulionisnedas pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT christofkheatherr pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT merchantsabeehas pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia AT kurdistanisiavashk pathogenicroleforhistoneh3copperreductaseactivityinayeastmodeloffriedreichsataxia |