Cargando…

Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress

Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca(2+)) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and mot...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Yong, Brown, Kevin M, Jones, Nathaniel G, Moreno, Silvia NJ, Sibley, L David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683080/
https://www.ncbi.nlm.nih.gov/pubmed/34860156
http://dx.doi.org/10.7554/eLife.73011
_version_ 1784617335318904832
author Fu, Yong
Brown, Kevin M
Jones, Nathaniel G
Moreno, Silvia NJ
Sibley, L David
author_facet Fu, Yong
Brown, Kevin M
Jones, Nathaniel G
Moreno, Silvia NJ
Sibley, L David
author_sort Fu, Yong
collection PubMed
description Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca(2+)) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca(2+) signaling pathways in bradyzoites remain largely unexplored. Here, we show that Ca(2+) responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca(2+) responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca(2+) imaging demonstrated lower Ca(2+) basal levels, reduced magnitude, and slower Ca(2+) kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with downregulation of Ca(2+)-ATPases involved in intracellular Ca(2+) storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca(2+) rapidly restored their intracellular Ca(2+) and ATP stores, leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca(2+) signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.
format Online
Article
Text
id pubmed-8683080
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-86830802021-12-20 Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress Fu, Yong Brown, Kevin M Jones, Nathaniel G Moreno, Silvia NJ Sibley, L David eLife Cell Biology Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca(2+)) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca(2+) signaling pathways in bradyzoites remain largely unexplored. Here, we show that Ca(2+) responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca(2+) responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca(2+) imaging demonstrated lower Ca(2+) basal levels, reduced magnitude, and slower Ca(2+) kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with downregulation of Ca(2+)-ATPases involved in intracellular Ca(2+) storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca(2+) rapidly restored their intracellular Ca(2+) and ATP stores, leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca(2+) signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility. eLife Sciences Publications, Ltd 2021-12-03 /pmc/articles/PMC8683080/ /pubmed/34860156 http://dx.doi.org/10.7554/eLife.73011 Text en © 2021, Fu et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Fu, Yong
Brown, Kevin M
Jones, Nathaniel G
Moreno, Silvia NJ
Sibley, L David
Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
title Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
title_full Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
title_fullStr Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
title_full_unstemmed Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
title_short Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
title_sort toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683080/
https://www.ncbi.nlm.nih.gov/pubmed/34860156
http://dx.doi.org/10.7554/eLife.73011
work_keys_str_mv AT fuyong toxoplasmabradyzoitesexhibitphysiologicalplasticityofcalciumandenergystorescontrollingmotilityandegress
AT brownkevinm toxoplasmabradyzoitesexhibitphysiologicalplasticityofcalciumandenergystorescontrollingmotilityandegress
AT jonesnathanielg toxoplasmabradyzoitesexhibitphysiologicalplasticityofcalciumandenergystorescontrollingmotilityandegress
AT morenosilvianj toxoplasmabradyzoitesexhibitphysiologicalplasticityofcalciumandenergystorescontrollingmotilityandegress
AT sibleyldavid toxoplasmabradyzoitesexhibitphysiologicalplasticityofcalciumandenergystorescontrollingmotilityandegress