Cargando…
Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight
Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusar...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683091/ https://www.ncbi.nlm.nih.gov/pubmed/34993050 http://dx.doi.org/10.1186/s40643-021-00479-y |
_version_ | 1784617337937199104 |
---|---|
author | Kim, Seon Hwa Vujanovic, Vladimir |
author_facet | Kim, Seon Hwa Vujanovic, Vladimir |
author_sort | Kim, Seon Hwa |
collection | PubMed |
description | Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusarium graminearum (F.g.), a devastating Fusarium head blight (FHB) disease in small-grain cereals. To understand the biotrophic mycoparasitism comprehensively, we performed Illumina RNA-Seq transcriptomic study on the fungus–fungus interaction in vitro. The aim is to identify the transcript-level mechanism related to the biotrophic S.m. mycoparasitism, particularly its ability to effectively control the F.g. 3-ADON chemotype. A shift in the transcriptomic profile of the mycoparasite was triggered in response to its interaction with F.g. during recognition (1.5 days) and colonization (3.5 days) steps. RNA-Seq analysis revealed ~ 30% of annotated transcripts with "function unknown". Further, 14 differentially expressed genes functionally linked to the biotrophic mycoparasitism were validated by quantitative real-time PCR (qPCR). The gene expression patterns of the filamentous haemagglutinin/adhesin/attachment factor as well as cell wall-degrading glucanases and chitinases were upregulated by host interaction. Besides, mycoparasitism-associated antioxidant resistance genes encoding ATP-binding cassette (ABC) transporter(s) and glutathione synthetase(s) were upregulated. However, the thioredoxin reductase was downregulated which infers that this antioxidant gene can be used as a resistance marker to assess S.m. antifungal and antimycotoxigenic activities. The interactive transcriptome of S. mycoparasitica provides new insights into specific mycoparasitism and will contribute to future research in controlling FHB. GRAPHIC ABSTRACT: [Image: see text] |
format | Online Article Text |
id | pubmed-8683091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-86830912022-01-04 Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight Kim, Seon Hwa Vujanovic, Vladimir Bioresour Bioprocess Research Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusarium graminearum (F.g.), a devastating Fusarium head blight (FHB) disease in small-grain cereals. To understand the biotrophic mycoparasitism comprehensively, we performed Illumina RNA-Seq transcriptomic study on the fungus–fungus interaction in vitro. The aim is to identify the transcript-level mechanism related to the biotrophic S.m. mycoparasitism, particularly its ability to effectively control the F.g. 3-ADON chemotype. A shift in the transcriptomic profile of the mycoparasite was triggered in response to its interaction with F.g. during recognition (1.5 days) and colonization (3.5 days) steps. RNA-Seq analysis revealed ~ 30% of annotated transcripts with "function unknown". Further, 14 differentially expressed genes functionally linked to the biotrophic mycoparasitism were validated by quantitative real-time PCR (qPCR). The gene expression patterns of the filamentous haemagglutinin/adhesin/attachment factor as well as cell wall-degrading glucanases and chitinases were upregulated by host interaction. Besides, mycoparasitism-associated antioxidant resistance genes encoding ATP-binding cassette (ABC) transporter(s) and glutathione synthetase(s) were upregulated. However, the thioredoxin reductase was downregulated which infers that this antioxidant gene can be used as a resistance marker to assess S.m. antifungal and antimycotoxigenic activities. The interactive transcriptome of S. mycoparasitica provides new insights into specific mycoparasitism and will contribute to future research in controlling FHB. GRAPHIC ABSTRACT: [Image: see text] Springer Singapore 2021-12-16 2021 /pmc/articles/PMC8683091/ /pubmed/34993050 http://dx.doi.org/10.1186/s40643-021-00479-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Kim, Seon Hwa Vujanovic, Vladimir Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight |
title | Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight |
title_full | Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight |
title_fullStr | Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight |
title_full_unstemmed | Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight |
title_short | Early transcriptomic response of the mycoparasite Sphaerodes mycoparasitica to the mycotoxigenic Fusarium graminearum 3-ADON, the cause of Fusarium head blight |
title_sort | early transcriptomic response of the mycoparasite sphaerodes mycoparasitica to the mycotoxigenic fusarium graminearum 3-adon, the cause of fusarium head blight |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683091/ https://www.ncbi.nlm.nih.gov/pubmed/34993050 http://dx.doi.org/10.1186/s40643-021-00479-y |
work_keys_str_mv | AT kimseonhwa earlytranscriptomicresponseofthemycoparasitesphaerodesmycoparasiticatothemycotoxigenicfusariumgraminearum3adonthecauseoffusariumheadblight AT vujanovicvladimir earlytranscriptomicresponseofthemycoparasitesphaerodesmycoparasiticatothemycotoxigenicfusariumgraminearum3adonthecauseoffusariumheadblight |