Cargando…
A Real-Time Object Detector for Autonomous Vehicles Based on YOLOv4
Object detection is an important part of autonomous driving technology. To ensure the safe running of vehicles at high speed, real-time and accurate detection of all the objects on the road is required. How to balance the speed and accuracy of detection is a hot research topic in recent years. This...
Autores principales: | Wang, Rui, Wang, Ziyue, Xu, Zhengwei, Wang, Chi, Li, Qiang, Zhang, Yuxin, Li, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683201/ https://www.ncbi.nlm.nih.gov/pubmed/34925498 http://dx.doi.org/10.1155/2021/9218137 |
Ejemplares similares
-
Real-time vehicle target detection in inclement weather conditions based on YOLOv4
por: Wang, Rui, et al.
Publicado: (2023) -
Fast and accurate object detector for autonomous driving based on improved YOLOv5
por: Jia, Xiang, et al.
Publicado: (2023) -
Improved YOLOv5 Network for Real-Time Object Detection in Vehicle-Mounted Camera Capture Scenarios
por: Ren, Zuyue, et al.
Publicado: (2023) -
VV-YOLO: A Vehicle View Object Detection Model Based on Improved YOLOv4
por: Wang, Yinan, et al.
Publicado: (2023) -
A Study on Object Detection Performance of YOLOv4 for Autonomous Driving of Tram
por: Woo, Joo, et al.
Publicado: (2022)