Cargando…
Comparing different nonlinearities in readout systems for optical neuromorphic computing networks
Nonlinear activation is a crucial building block of most machine-learning systems. However, unlike in the digital electrical domain, applying a saturating nonlinear function in a neural network in the analog optical domain is not as easy, especially in integrated systems. In this paper, we first inv...
Autores principales: | Ma, Chonghuai, Lambrecht, Joris, Laporte, Floris, Yin, Xin, Dambre, Joni, Bienstman, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683405/ https://www.ncbi.nlm.nih.gov/pubmed/34921207 http://dx.doi.org/10.1038/s41598-021-03594-0 |
Ejemplares similares
-
Addressing limited weight resolution in a fully optical neuromorphic reservoir computing readout
por: Ma, Chonghuai, et al.
Publicado: (2021) -
Simulating self-learning in photorefractive optical reservoir computers
por: Laporte, Floris, et al.
Publicado: (2021) -
Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch
por: Laporte, Floris, et al.
Publicado: (2019) -
Experimental results on nonlinear distortion compensation using photonic reservoir computing with a single set of weights for different wavelengths
por: Gooskens, Emmanuel, et al.
Publicado: (2023) -
A training algorithm for networks of high-variability reservoirs
por: Freiberger, Matthias, et al.
Publicado: (2020)