Cargando…
Functional random forests for curve response
The rapid advancement of functional data in various application fields has increased the demand for advanced statistical approaches that can incorporate complex structures and nonlinear associations. In this article, we propose a novel functional random forests (FunFor) approach to model the functio...
Autores principales: | Fu, Guifang, Dai, Xiaotian, Liang, Yeheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683425/ https://www.ncbi.nlm.nih.gov/pubmed/34921167 http://dx.doi.org/10.1038/s41598-021-02265-4 |
Ejemplares similares
-
Predicting curve progression for adolescent idiopathic scoliosis using random forest model
por: Alfraihat, Ausilah, et al.
Publicado: (2022) -
An adaptive threshold determination method of feature screening for genomic selection
por: Fu, Guifang, et al.
Publicado: (2017) -
Detecting PCOS susceptibility loci from genome-wide association studies via iterative trend correlation based feature screening
por: Dai, Xiaotian, et al.
Publicado: (2020) -
Functional random forest with applications in dose-response predictions
por: Rahman, Raziur, et al.
Publicado: (2019) -
Statistical Learning Methods Applicable to Genome-Wide Association Studies on Unbalanced Case-Control Disease Data
por: Dai, Xiaotian, et al.
Publicado: (2021)