Cargando…

Synthesis of non-phosphorylated epoxidised corn oil as a novel green flame retardant thermoset resin

This study aimed to produce a new potential flame retardant thermoset resin from epoxidised corn oil through a one-pot method using liquid inorganic catalysed with hydrogen peroxide. Using a gas chromatography–mass selective detector, attenuated total reflectance-fourier transform infrared spectrosc...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabo, Maurelio, M. N., Prabhakar, Song, Jung-il
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683440/
https://www.ncbi.nlm.nih.gov/pubmed/34921150
http://dx.doi.org/10.1038/s41598-021-03274-z
Descripción
Sumario:This study aimed to produce a new potential flame retardant thermoset resin from epoxidised corn oil through a one-pot method using liquid inorganic catalysed with hydrogen peroxide. Using a gas chromatography–mass selective detector, attenuated total reflectance-fourier transform infrared spectroscopy, proton nuclear magnetic resonance imaging, optical microscopy, and scanning emission microscopy, we synthesised a bio-based resin based on newly designed parameters. The flame retardant capacity was fully established using thermogravimetric analysis and a micro calorimeter. The produced epoxidised corn oil had a relative percentage conversion of oxirane of approximately 91.70%, wherein the amount of double bonds converted into epoxides was calculated. A significant reduction from 17 to 40% in peak heat rate release (pHRR) and 26–30% in total heat release was observed, confirming its flame retardant property. Thus, the potential of epoxidised corn oil was demonstrated.