Cargando…
Nonnegative matrix factorization‐based bioinformatics analysis reveals that TPX2 and SELENBP1 are two predictors of the inner sub‐consensuses of lung adenocarcinoma
BACKGROUND: Lung adenocarcinoma (LUAD) is a heterogeneous disease. However the inner sub‐groups of LUAD have not been fully studied. Markers predicted the sub‐groups and prognosis of LUAD are badly needed. AIMS: To identify biomarkers associated with the sub‐groups and prognosis of LUAD. MATERIALS A...
Autores principales: | Wang, Haiwei, Wang, Xinrui, Xu, Liangpu, Cao, Hua, Zhang, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683537/ https://www.ncbi.nlm.nih.gov/pubmed/34734491 http://dx.doi.org/10.1002/cam4.4386 |
Ejemplares similares
-
Identification of dysregulated genes in rheumatoid arthritis based on bioinformatics analysis
por: Hao, Ruihu, et al.
Publicado: (2017) -
Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma
por: Guo, Tingting, et al.
Publicado: (2019) -
Chromosome 1p36 candidate gene ZNF436 predicts the prognosis of neuroblastoma: a bioinformatic analysis
por: Wang, Haiwei, et al.
Publicado: (2023) -
Identification of CDT1 as a prognostic marker in human lung adenocarcinoma using bioinformatics approaches
por: Jiang, Jing, et al.
Publicado: (2023) -
Upregulation of desmoglein 2 and its clinical value in lung adenocarcinoma: a comprehensive analysis by multiple bioinformatics methods
por: Sun, Ruiying, et al.
Publicado: (2020)