Cargando…
Polysome profiling followed by quantitative PCR for identifying potential micropeptide encoding long non-coding RNAs in suspension cell lines
Micropeptides are emerging as important regulators of various cellular processes. Long non-coding RNAs (lncRNAs) serve as a source of micropeptide-encoding small reading frames. The techniques to detect micropeptides or translating lncRNAs, such as mass spectrometry and ribosome profiling, are sophi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683657/ https://www.ncbi.nlm.nih.gov/pubmed/34977682 http://dx.doi.org/10.1016/j.xpro.2021.101037 |
Sumario: | Micropeptides are emerging as important regulators of various cellular processes. Long non-coding RNAs (lncRNAs) serve as a source of micropeptide-encoding small reading frames. The techniques to detect micropeptides or translating lncRNAs, such as mass spectrometry and ribosome profiling, are sophisticated and expensive. Here, we present an easy and cost-effective protocol to screen for potential micropeptide-encoding lncRNAs by polysome profiling in suspension cell lines. When combined with quantitative PCR, this protocol facilitates the identification of a number of translating lncRNAs simultaneously. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021). |
---|