Cargando…
Combining word embeddings to extract chemical and drug entities in biomedical literature
BACKGROUND: Natural language processing (NLP) and text mining technologies for the extraction and indexing of chemical and drug entities are key to improving the access and integration of information from unstructured data such as biomedical literature. METHODS: In this paper we evaluate two importa...
Autores principales: | López-Úbeda, Pilar, Díaz-Galiano, Manuel Carlos, Ureña-López, L. Alfonso, Martín-Valdivia, M. Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684055/ https://www.ncbi.nlm.nih.gov/pubmed/34920708 http://dx.doi.org/10.1186/s12859-021-04188-3 |
Ejemplares similares
-
COVID-19 detection in radiological text reports integrating entity recognition
por: López-Úbeda, Pilar, et al.
Publicado: (2020) -
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts
por: Wang, Yanshan, et al.
Publicado: (2017) -
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021) -
Thesaurus-based word embeddings for automated biomedical literature classification
por: Koutsomitropoulos, Dimitrios A., et al.
Publicado: (2021)