Cargando…
Deep learning with language models improves named entity recognition for PharmaCoNER
BACKGROUND: The recognition of pharmacological substances, compounds and proteins is essential for biomedical relation extraction, knowledge graph construction, drug discovery, as well as medical question answering. Although considerable efforts have been made to recognize biomedical entities in Eng...
Autores principales: | Sun, Cong, Yang, Zhihao, Wang, Lei, Zhang, Yin, Lin, Hongfei, Wang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684061/ https://www.ncbi.nlm.nih.gov/pubmed/34920700 http://dx.doi.org/10.1186/s12859-021-04260-y |
Ejemplares similares
-
DroNER: Dataset for drone named entity recognition
por: Silalahi, Swardiantara, et al.
Publicado: (2023) -
PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts
por: Armengol-Estapé, Jordi, et al.
Publicado: (2019) -
DTranNER: biomedical named entity recognition with deep learning-based label-label transition model
por: Hong, S. K., et al.
Publicado: (2020) -
CheNER: chemical named entity recognizer
por: Usié, Anabel, et al.
Publicado: (2014) -
S-NER: A Concise and Efficient Span-Based Model for Named Entity Recognition
por: Yu, Jie, et al.
Publicado: (2022)