Cargando…
Effect of glucose mediated oxidative stress on apoptotic gene expression in gingival mesenchymal stem cells
BACKGROUND: Diabetes is a common disease that causes gingival and periodontal problems. Stem cells isolated from dental sources are an emerging area of research with a potential to facilitate regenerative medicine. The stem cells retain the property of self-renewal and the ones isolated from dental...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684132/ https://www.ncbi.nlm.nih.gov/pubmed/34922513 http://dx.doi.org/10.1186/s12903-021-02007-y |
Sumario: | BACKGROUND: Diabetes is a common disease that causes gingival and periodontal problems. Stem cells isolated from dental sources are an emerging area of research with a potential to facilitate regenerative medicine. The stem cells retain the property of self-renewal and the ones isolated from dental sources are mainly multipotent mesenchymal stem cells that have the ability to self-renew as well as differentiation towards multiple lineages. OBJECTIVES: We aimed to isolate and characterize gingival mesenchymal stem cells by pluripotency markers and investigated the effect of oxidative stress on growth kinetics and apoptotic gene expression of gingival cells exposed to glucose mediated oxidative stress. METHODS: In this study, we isolated gingival mesenchymal stem cells from gingiva. This was followed by morphologic analysis using inverted phase contrast microscopy and molecular profiling of these cells for the mRNA expression of specific genes. The isolated cells were cultured till passage 3 and then exposed to oxidative stress (high glucose concentration). We measured the apoptotic gene expression and compared their growth kinetics. RESULTS: The results showed that oxidative stress produced by glucose reduced growth kinetics and increased apoptotic gene expression in gingival mesenchymal stem cells. According to the genetic results, glucose activated TNF family to initiate apoptosis. CONCLUSION: In conclusion, the present study demonstrated that high glucose obliterated cellular proliferation testified by evaluating growth kinetics and induced apoptotic gene expression in gingival mesenchymal stem cells. This initiated extrinsic apoptotic pathway mediated by TNF family. Therefore, in diabetes oral health condition is compromised and periodontal disease is common. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12903-021-02007-y. |
---|