Cargando…
The prediction of hospital length of stay using unstructured data
OBJECTIVE: This study aimed to assess the performance improvement for machine learning-based hospital length of stay (LOS) predictions when clinical signs written in text are accounted for and compared to the traditional approach of solely considering structured information such as age, gender and m...
Autores principales: | Chrusciel, Jan, Girardon, François, Roquette, Lucien, Laplanche, David, Duclos, Antoine, Sanchez, Stéphane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684269/ https://www.ncbi.nlm.nih.gov/pubmed/34922532 http://dx.doi.org/10.1186/s12911-021-01722-4 |
Ejemplares similares
-
Impact of the implementation of a fast-track on emergency department length of stay and quality of care indicators in the Champagne-Ardenne region: a before–after study
por: Chrusciel, Jan, et al.
Publicado: (2019) -
Finding the best trade-off between performance and interpretability in predicting hospital length of stay using structured and unstructured data
por: Jaotombo, Franck, et al.
Publicado: (2023) -
Multimorbidity clustering of the emergency department patient flow: Impact analysis of new unscheduled care clinics
por: Wartelle, Adrien, et al.
Publicado: (2022) -
Making sense of the French public hospital system: a network-based approach to hospital clustering using unsupervised learning methods
por: Chrusciel, Jan, et al.
Publicado: (2021) -
The Use of Telemedicine in Nursing Homes: A Mixed-Method Study to Identify Critical Factors When Connecting with a General Hospital
por: Cormi, Clément, et al.
Publicado: (2021)