Cargando…
A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
PURPOSE: To develop and assess the accuracy of a hybrid deep learning construct for detecting keratoconus (KCN) based on corneal topographic maps. METHODS: We collected 3794 corneal images from 542 eyes of 280 subjects and developed seven deep learning models based on anterior and posterior eccentri...
Autores principales: | Al-Timemy, Ali H., Mosa, Zahraa M., Alyasseri, Zaid, Lavric, Alexandru, Lui, Marcelo M., Hazarbassanov, Rossen M., Yousefi, Siamak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684312/ https://www.ncbi.nlm.nih.gov/pubmed/34913952 http://dx.doi.org/10.1167/tvst.10.14.16 |
Ejemplares similares
-
Keratoconus Detection-based on Dynamic Corneal Deformation Videos Using Deep Learning
por: Abdelmotaal, Hazem, et al.
Publicado: (2023) -
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
por: Al-Timemy, Ali H., et al.
Publicado: (2023) -
Association between visual field damage and corneal structural parameters
por: Lavric, Alexandru, et al.
Publicado: (2021) -
KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks
por: Lavric, Alexandru, et al.
Publicado: (2019) -
Diagnostic Accuracy of Corneal and Epithelial Thickness Map Parameters to Detect Keratoconus and Suspect Keratoconus
por: Salman, Abdelrahman, et al.
Publicado: (2023)