Cargando…
Effects of Negation and Uncertainty Stratification on Text-Derived Patient Profile Similarity
Semantic similarity is a useful approach for comparing patient phenotypes, and holds the potential of an effective method for exploiting text-derived phenotypes for differential diagnosis, text and document classification, and outcome prediction. While approaches for context disambiguation are commo...
Autores principales: | Slater, Luke T., Karwath, Andreas, Hoehndorf, Robert, Gkoutos, Georgios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685209/ https://www.ncbi.nlm.nih.gov/pubmed/34939069 http://dx.doi.org/10.3389/fdgth.2021.781227 |
Ejemplares similares
-
Evaluating semantic similarity methods for comparison of text-derived phenotype profiles
por: Slater, Luke T., et al.
Publicado: (2022) -
Multi-faceted semantic clustering with text-derived phenotypes()
por: Slater, Luke T., et al.
Publicado: (2021) -
Towards similarity-based differential diagnostics for common diseases
por: Slater, Luke T., et al.
Publicado: (2021) -
A fast, accurate, and generalisable heuristic-based negation detection algorithm for clinical text
por: Slater, Luke T., et al.
Publicado: (2021) -
Improved characterisation of clinical text through ontology-based vocabulary expansion
por: Slater, Luke T., et al.
Publicado: (2021)