Cargando…
Ontology-Enabled Emotional Sentiment Analysis on COVID-19 Pandemic-Related Twitter Streams
The exponential growth of social media users has changed the dynamics of retrieving the potential information from user-generated content and transformed the paradigm of information-retrieval mechanism with the novel developments on the concept of “web of data”. In this regard, our proposed Ontology...
Autores principales: | Narayanasamy, Senthil Kumar, Srinivasan, Kathiravan, Mian Qaisar, Saeed, Chang, Chuan-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685242/ https://www.ncbi.nlm.nih.gov/pubmed/34938715 http://dx.doi.org/10.3389/fpubh.2021.798905 |
Ejemplares similares
-
Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate
por: Kaliappan, Jayakumar, et al.
Publicado: (2021) -
Twitter sentiment analysis: An Arabic text mining approach based on COVID-19
por: Albahli, Saleh
Publicado: (2022) -
Public sentiments toward COVID-19 vaccines in South African cities: An analysis of Twitter posts
por: Ogbuokiri, Blessing, et al.
Publicado: (2022) -
Exploring public sentiment and vaccination uptake of COVID-19 vaccines in England: a spatiotemporal and sociodemographic analysis of Twitter data
por: Cheng, Tao, et al.
Publicado: (2023) -
The Impact of Pandemics Sentiment on the Global Art Market
por: Wang, Wei
Publicado: (2021)