Cargando…
Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach
Background: Antiarrhythmic drugs are the first-line treatment for atrial fibrillation (AF), but their effect is highly dependent on the characteristics of the patient. Moreover, anatomical variability, and specifically atrial size, have also a strong influence on AF recurrence. Objective: We perform...
Autores principales: | Sanchez de la Nava, Ana Maria, Arenal, Ángel, Fernández-Avilés, Francisco, Atienza, Felipe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685526/ https://www.ncbi.nlm.nih.gov/pubmed/34938202 http://dx.doi.org/10.3389/fphys.2021.768468 |
Ejemplares similares
-
Artificial intelligence analysis of the impact of fibrosis in arrhythmogenesis and drug response
por: Sánchez de la Nava, Ana María, et al.
Publicado: (2022) -
Personalized Evaluation of Atrial Complexity of Patients Undergoing Atrial Fibrillation Ablation: A Clinical Computational Study
por: Sánchez de la Nava, Ana María, et al.
Publicado: (2021) -
Real-Time Rotational Activity Detection in Atrial Fibrillation
por: Ríos-Muñoz, Gonzalo R., et al.
Publicado: (2018) -
Corrigendum: Real-Time Rotational Activity Detection in Atrial Fibrillation
por: Ríos-Muñoz, Gonzalo R., et al.
Publicado: (2018) -
Convolutional Neural Networks for Mechanistic Driver Detection in Atrial Fibrillation
por: Ríos-Muñoz, Gonzalo Ricardo, et al.
Publicado: (2022)