Cargando…
BERT-Based Natural Language Processing of Drug Labeling Documents: A Case Study for Classifying Drug-Induced Liver Injury Risk
Background & Aims: The United States Food and Drug Administration (FDA) regulates a broad range of consumer products, which account for about 25% of the United States market. The FDA regulatory activities often involve producing and reading of a large number of documents, which is time consuming...
Autores principales: | Wu, Yue, Liu, Zhichao, Wu, Leihong, Chen, Minjun, Tong, Weida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685544/ https://www.ncbi.nlm.nih.gov/pubmed/34939028 http://dx.doi.org/10.3389/frai.2021.729834 |
Ejemplares similares
-
InferBERT: A Transformer-Based Causal Inference Framework for Enhancing Pharmacovigilance
por: Wang, Xingqiao, et al.
Publicado: (2021) -
COVID-Twitter-BERT: A natural language processing model to analyse COVID-19 content on Twitter
por: Müller, Martin, et al.
Publicado: (2023) -
Adaptability of AI for safety evaluation in regulatory science: A case study of drug-induced liver injury
por: Connor, Skylar, et al.
Publicado: (2022) -
Classifying Free
Texts Into Predefined Sections Using
AI in Regulatory Documents: A Case Study with Drug Labeling Documents
por: Gray, Magnus, et al.
Publicado: (2023) -
DICE: A Drug Indication Classification and Encyclopedia for AI-Based Indication Extraction
por: Bhatt, Arjun, et al.
Publicado: (2021)