Cargando…
Complex pathways and memory in compressed corrugated sheets
The nonlinear response of driven complex materials—disordered magnets, amorphous media, and crumpled sheets—features intricate transition pathways where the system repeatedly hops between metastable states. Such pathways encode memory effects and may allow information processing, yet tools are lacki...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685682/ https://www.ncbi.nlm.nih.gov/pubmed/34876523 http://dx.doi.org/10.1073/pnas.2111436118 |
_version_ | 1784617879897899008 |
---|---|
author | Bense, Hadrien van Hecke, Martin |
author_facet | Bense, Hadrien van Hecke, Martin |
author_sort | Bense, Hadrien |
collection | PubMed |
description | The nonlinear response of driven complex materials—disordered magnets, amorphous media, and crumpled sheets—features intricate transition pathways where the system repeatedly hops between metastable states. Such pathways encode memory effects and may allow information processing, yet tools are lacking to experimentally observe and control these pathways, and their full breadth has not been explored. Here we introduce compression of corrugated elastic sheets to precisely observe and manipulate their full, multistep pathways, which are reproducible, robust, and controlled by geometry. We show how manipulation of the boundaries allows us to elicit multiple targeted pathways from a single sample. In all cases, each state in the pathway can be encoded by the binary state of material bits called hysterons, and the strength of their interactions plays a crucial role. In particular, as function of increasing interaction strength, we observe Preisach pathways, expected in systems of independently switching hysterons; scrambled pathways that evidence hitherto unexplored interactions between these material bits; and accumulator pathways which leverage these interactions to perform an elementary computation. Our work opens a route to probe, manipulate, and understand complex pathways, impacting future applications in soft robotics and information processing in materials. |
format | Online Article Text |
id | pubmed-8685682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-86856822022-01-06 Complex pathways and memory in compressed corrugated sheets Bense, Hadrien van Hecke, Martin Proc Natl Acad Sci U S A Physical Sciences The nonlinear response of driven complex materials—disordered magnets, amorphous media, and crumpled sheets—features intricate transition pathways where the system repeatedly hops between metastable states. Such pathways encode memory effects and may allow information processing, yet tools are lacking to experimentally observe and control these pathways, and their full breadth has not been explored. Here we introduce compression of corrugated elastic sheets to precisely observe and manipulate their full, multistep pathways, which are reproducible, robust, and controlled by geometry. We show how manipulation of the boundaries allows us to elicit multiple targeted pathways from a single sample. In all cases, each state in the pathway can be encoded by the binary state of material bits called hysterons, and the strength of their interactions plays a crucial role. In particular, as function of increasing interaction strength, we observe Preisach pathways, expected in systems of independently switching hysterons; scrambled pathways that evidence hitherto unexplored interactions between these material bits; and accumulator pathways which leverage these interactions to perform an elementary computation. Our work opens a route to probe, manipulate, and understand complex pathways, impacting future applications in soft robotics and information processing in materials. National Academy of Sciences 2021-12-07 2021-12-14 /pmc/articles/PMC8685682/ /pubmed/34876523 http://dx.doi.org/10.1073/pnas.2111436118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Physical Sciences Bense, Hadrien van Hecke, Martin Complex pathways and memory in compressed corrugated sheets |
title | Complex pathways and memory in compressed corrugated sheets |
title_full | Complex pathways and memory in compressed corrugated sheets |
title_fullStr | Complex pathways and memory in compressed corrugated sheets |
title_full_unstemmed | Complex pathways and memory in compressed corrugated sheets |
title_short | Complex pathways and memory in compressed corrugated sheets |
title_sort | complex pathways and memory in compressed corrugated sheets |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685682/ https://www.ncbi.nlm.nih.gov/pubmed/34876523 http://dx.doi.org/10.1073/pnas.2111436118 |
work_keys_str_mv | AT bensehadrien complexpathwaysandmemoryincompressedcorrugatedsheets AT vanheckemartin complexpathwaysandmemoryincompressedcorrugatedsheets |