Cargando…
Local dendritic balance enables learning of efficient representations in networks of spiking neurons
How can neural networks learn to efficiently represent complex and high-dimensional inputs via local plasticity mechanisms? Classical models of representation learning assume that feedforward weights are learned via pairwise Hebbian-like plasticity. Here, we show that pairwise Hebbian-like plasticit...
Autores principales: | Mikulasch, Fabian A., Rudelt, Lucas, Priesemann, Viola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685685/ https://www.ncbi.nlm.nih.gov/pubmed/34876505 http://dx.doi.org/10.1073/pnas.2021925118 |
Ejemplares similares
-
Embedding optimization reveals long-lasting history dependence in neural spiking activity
por: Rudelt, Lucas, et al.
Publicado: (2021) -
Operating in a Reverberating Regime Enables Rapid Tuning of Network States to Task Requirements
por: Wilting, Jens, et al.
Publicado: (2018) -
Breakdown of local information processing may underlie isoflurane anesthesia effects
por: Wollstadt, Patricia, et al.
Publicado: (2017) -
NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways
por: Wybo, Willem A. M., et al.
Publicado: (2023) -
The Global Spike: Conserved Dendritic Properties Enable Unique Ca(2+) Spike Generation in Low-Threshold Spiking Neurons
por: Connelly, William M., et al.
Publicado: (2015)