Cargando…
Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis of Intra- and Extra-articular Hip Impingement
BACKGROUND: Dynamic 3-dimensional (3D) simulation of hip impingement enables better understanding of complex hip deformities in young adult patients with femoroacetabular impingement (FAI). Deep learning algorithms may improve magnetic resonance imaging (MRI) segmentation. PURPOSE: (1) To evaluate t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685729/ https://www.ncbi.nlm.nih.gov/pubmed/34938819 http://dx.doi.org/10.1177/23259671211046916 |
_version_ | 1784617882769948672 |
---|---|
author | Zeng, Guodong Degonda, Celia Boschung, Adam Schmaranzer, Florian Gerber, Nicolas Siebenrock, Klaus A. Steppacher, Simon D. Tannast, Moritz Lerch, Till D. |
author_facet | Zeng, Guodong Degonda, Celia Boschung, Adam Schmaranzer, Florian Gerber, Nicolas Siebenrock, Klaus A. Steppacher, Simon D. Tannast, Moritz Lerch, Till D. |
author_sort | Zeng, Guodong |
collection | PubMed |
description | BACKGROUND: Dynamic 3-dimensional (3D) simulation of hip impingement enables better understanding of complex hip deformities in young adult patients with femoroacetabular impingement (FAI). Deep learning algorithms may improve magnetic resonance imaging (MRI) segmentation. PURPOSE: (1) To evaluate the accuracy of 3D models created using convolutional neural networks (CNNs) for fully automatic MRI bone segmentation of the hip joint, (2) to correlate hip range of motion (ROM) between manual and automatic segmentation, and (3) to compare location of hip impingement in 3D models created using automatic bone segmentation in patients with FAI. STUDY DESIGN: Cohort study (diagnosis); Level of evidence, 3. METHODS: The authors retrospectively reviewed 31 hip MRI scans from 26 symptomatic patients (mean age, 27 years) with hip pain due to FAI. All patients had matched computed tomography (CT) and MRI scans of the pelvis and the knee. CT- and MRI-based osseous 3D models of the hip joint of the same patients were compared (MRI: T1 volumetric interpolated breath-hold examination high-resolution sequence; 0.8 mm(3) isovoxel). CNNs were used to develop fully automatic bone segmentation of the hip joint, and the 3D models created using this method were compared with manual segmentation of CT- and MRI-based 3D models. Impingement-free ROM and location of hip impingement were calculated using previously validated collision detection software. RESULTS: The difference between the CT- and MRI-based 3D models was <1 mm, and the difference between fully automatic and manual segmentation of MRI-based 3D models was <1 mm. The correlation of automatic and manual MRI-based 3D models was excellent and significant for impingement-free ROM (r = 0.995; P < .001), flexion (r = 0.953; P < .001), and internal rotation at 90° of flexion (r = 0.982; P < .001). The correlation for impingement-free flexion between automatic MRI-based 3D models and CT-based 3D models was 0.953 (P < .001). The location of impingement was not significantly different between manual and automatic segmentation of MRI-based 3D models, and the location of extra-articular hip impingement was not different between CT- and MRI-based 3D models. CONCLUSION: CNN can potentially be used in clinical practice to provide rapid and accurate 3D MRI hip joint models for young patients. The created models can be used for simulation of impingement during diagnosis of intra- and extra-articular hip impingement to enable radiation-free and patient-specific surgical planning for hip arthroscopy and open hip preservation surgery. |
format | Online Article Text |
id | pubmed-8685729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-86857292021-12-21 Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis of Intra- and Extra-articular Hip Impingement Zeng, Guodong Degonda, Celia Boschung, Adam Schmaranzer, Florian Gerber, Nicolas Siebenrock, Klaus A. Steppacher, Simon D. Tannast, Moritz Lerch, Till D. Orthop J Sports Med Article BACKGROUND: Dynamic 3-dimensional (3D) simulation of hip impingement enables better understanding of complex hip deformities in young adult patients with femoroacetabular impingement (FAI). Deep learning algorithms may improve magnetic resonance imaging (MRI) segmentation. PURPOSE: (1) To evaluate the accuracy of 3D models created using convolutional neural networks (CNNs) for fully automatic MRI bone segmentation of the hip joint, (2) to correlate hip range of motion (ROM) between manual and automatic segmentation, and (3) to compare location of hip impingement in 3D models created using automatic bone segmentation in patients with FAI. STUDY DESIGN: Cohort study (diagnosis); Level of evidence, 3. METHODS: The authors retrospectively reviewed 31 hip MRI scans from 26 symptomatic patients (mean age, 27 years) with hip pain due to FAI. All patients had matched computed tomography (CT) and MRI scans of the pelvis and the knee. CT- and MRI-based osseous 3D models of the hip joint of the same patients were compared (MRI: T1 volumetric interpolated breath-hold examination high-resolution sequence; 0.8 mm(3) isovoxel). CNNs were used to develop fully automatic bone segmentation of the hip joint, and the 3D models created using this method were compared with manual segmentation of CT- and MRI-based 3D models. Impingement-free ROM and location of hip impingement were calculated using previously validated collision detection software. RESULTS: The difference between the CT- and MRI-based 3D models was <1 mm, and the difference between fully automatic and manual segmentation of MRI-based 3D models was <1 mm. The correlation of automatic and manual MRI-based 3D models was excellent and significant for impingement-free ROM (r = 0.995; P < .001), flexion (r = 0.953; P < .001), and internal rotation at 90° of flexion (r = 0.982; P < .001). The correlation for impingement-free flexion between automatic MRI-based 3D models and CT-based 3D models was 0.953 (P < .001). The location of impingement was not significantly different between manual and automatic segmentation of MRI-based 3D models, and the location of extra-articular hip impingement was not different between CT- and MRI-based 3D models. CONCLUSION: CNN can potentially be used in clinical practice to provide rapid and accurate 3D MRI hip joint models for young patients. The created models can be used for simulation of impingement during diagnosis of intra- and extra-articular hip impingement to enable radiation-free and patient-specific surgical planning for hip arthroscopy and open hip preservation surgery. SAGE Publications 2021-11-24 /pmc/articles/PMC8685729/ /pubmed/34938819 http://dx.doi.org/10.1177/23259671211046916 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Article Zeng, Guodong Degonda, Celia Boschung, Adam Schmaranzer, Florian Gerber, Nicolas Siebenrock, Klaus A. Steppacher, Simon D. Tannast, Moritz Lerch, Till D. Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis of Intra- and Extra-articular Hip Impingement |
title | Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip
Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis
of Intra- and Extra-articular Hip Impingement |
title_full | Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip
Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis
of Intra- and Extra-articular Hip Impingement |
title_fullStr | Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip
Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis
of Intra- and Extra-articular Hip Impingement |
title_full_unstemmed | Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip
Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis
of Intra- and Extra-articular Hip Impingement |
title_short | Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip
Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis
of Intra- and Extra-articular Hip Impingement |
title_sort | three-dimensional magnetic resonance imaging bone models of the hip
joint using deep learning: dynamic simulation of hip impingement for diagnosis
of intra- and extra-articular hip impingement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685729/ https://www.ncbi.nlm.nih.gov/pubmed/34938819 http://dx.doi.org/10.1177/23259671211046916 |
work_keys_str_mv | AT zengguodong threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT degondacelia threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT boschungadam threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT schmaranzerflorian threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT gerbernicolas threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT siebenrockklausa threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT steppachersimond threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT tannastmoritz threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement AT lerchtilld threedimensionalmagneticresonanceimagingbonemodelsofthehipjointusingdeeplearningdynamicsimulationofhipimpingementfordiagnosisofintraandextraarticularhipimpingement |