Cargando…
On the relationship between research parasites and fairness in machine learning: challenges and opportunities
Machine learning systems influence our daily lives in many different ways. Hence, it is crucial to ensure that the decisions and recommendations made by these systems are fair, equitable, and free of unintended biases. Over the past few years, the field of fairness in machine learning has grown rapi...
Autores principales: | Nieto, Nicolás, Larrazabal, Agostina, Peterson, Victoria, Milone, Diego H, Ferrante, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685850/ https://www.ncbi.nlm.nih.gov/pubmed/34927190 http://dx.doi.org/10.1093/gigascience/giab086 |
Ejemplares similares
-
Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis
por: Larrazabal, Agostina J., et al.
Publicado: (2020) -
Opportunities and challenges in rheumatology research in Central Europe
por: Szekanecz, Zoltán, et al.
Publicado: (2017) -
Opportunities and Challenges for Personal Heat Exposure Research
por: Kuras, Evan R., et al.
Publicado: (2017) -
Equity in essence: a call for operationalising fairness in machine learning for healthcare
por: Wawira Gichoya, Judy, et al.
Publicado: (2021) -
IX international conference on Salt Lake research: Research opportunities and management challenges
por: Jellison, Robert
Publicado: (2005)