Cargando…
Clinical feature-related single-base substitution sequence signatures identified with an unsupervised machine learning approach
BACKGROUND: Mutation processes leave different signatures in genes. For single-base substitutions, previous studies have suggested that mutation signatures are not only reflected in mutation bases but also in neighboring bases. However, because of the lack of a method to identify features of long se...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686331/ https://www.ncbi.nlm.nih.gov/pubmed/34930241 http://dx.doi.org/10.1186/s12920-021-01144-1 |