Cargando…
Clinical feature-related single-base substitution sequence signatures identified with an unsupervised machine learning approach
BACKGROUND: Mutation processes leave different signatures in genes. For single-base substitutions, previous studies have suggested that mutation signatures are not only reflected in mutation bases but also in neighboring bases. However, because of the lack of a method to identify features of long se...
Autores principales: | Ji, Hongchen, Li, Junjie, Zhang, Qiong, Yang, Jingyue, Duan, Juanli, Wang, Xiaowen, Ma, Ben, Zhang, Zhuochao, Pan, Wei, Zhang, Hongmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686331/ https://www.ncbi.nlm.nih.gov/pubmed/34930241 http://dx.doi.org/10.1186/s12920-021-01144-1 |
Ejemplares similares
-
Identification of stromal microenvironment characteristics and key molecular mining in pancreatic cancer
por: Ji, Hongchen, et al.
Publicado: (2022) -
Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer
por: Gal, Jocelyn, et al.
Publicado: (2020) -
Unsupervised Machine Learning to Identify Depressive Subtypes
por: Kung, Benson, et al.
Publicado: (2022) -
Unsupervised machine learning identifies predictive progression markers of IPF
por: Pan, Jeanny, et al.
Publicado: (2022) -
Unsupervised machine learning-based clustering identifies unique molecular signatures of colorectal cancer with distinct clinical outcomes
por: Singh, Manish Pratap, et al.
Publicado: (2023)