Cargando…
Deep Learning–Assisted Burn Wound Diagnosis: Diagnostic Model Development Study
BACKGROUND: Accurate assessment of the percentage total body surface area (%TBSA) of burn wounds is crucial in the management of burn patients. The resuscitation fluid and nutritional needs of burn patients, their need for intensive unit care, and probability of mortality are all directly related to...
Autores principales: | Chang, Che Wei, Lai, Feipei, Christian, Mesakh, Chen, Yu Chun, Hsu, Ching, Chen, Yo Shen, Chang, Dun Hao, Roan, Tyng Luen, Yu, Yen Che |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686480/ https://www.ncbi.nlm.nih.gov/pubmed/34860674 http://dx.doi.org/10.2196/22798 |
Ejemplares similares
-
Deep learning approach based on superpixel segmentation assisted labeling for automatic pressure ulcer diagnosis
por: Chang, Che Wei, et al.
Publicado: (2022) -
Automatic segmentation and measurement of pressure injuries using deep learning models and a LiDAR camera
por: Liu, Tom J., et al.
Publicado: (2023) -
Tomotherapy as an Alternative Irradiative Treatment for Complicated Keloids
por: Lin, Yu-Fang, et al.
Publicado: (2020) -
Enhancing panic disorder treatment with mobile-aided case management: an exploratory study based on a 3-year cohort analysis
por: Tsai, Chan-hen, et al.
Publicado: (2023) -
Burn blister fluids in the neovascularization stage of burn wound healing: A comparison between superficial and deep partial-thickness burn wounds
por: Pan, Shin-Chen
Publicado: (2015)