Cargando…

Exploration of Lung Cancer-Related Genetic Factors via Mendelian Randomization Method Based on Genomic and Transcriptomic Summarized Data

Lung carcinoma is one of the most deadly malignant tumors in mankind. With the rising incidence of lung cancer, searching for the high effective cures become more and more imperative. There has been sufficient research evidence that living habits and situations such as smoking and air pollution are...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Nitao, Cui, Xinran, Chen, Chen, Li, Changsheng, Huang, Jingyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686495/
https://www.ncbi.nlm.nih.gov/pubmed/34938740
http://dx.doi.org/10.3389/fcell.2021.800756
Descripción
Sumario:Lung carcinoma is one of the most deadly malignant tumors in mankind. With the rising incidence of lung cancer, searching for the high effective cures become more and more imperative. There has been sufficient research evidence that living habits and situations such as smoking and air pollution are associated with an increased risk of lung cancer. Simultaneously, the influence of individual genetic susceptibility on lung carcinoma morbidity has been confirmed, and a growing body of evidence has been accumulated on the relationship between various risk factors and the risk of different pathological types of lung cancer. Additionally, the analyses from many large-scale cancer registries have shown a degree of familial aggregation of lung cancer. To explore lung cancer-related genetic factors, Genome-Wide Association Studies (GWAS) have been used to identify several lung cancer susceptibility sites and have been widely validated. However, the biological mechanism behind the impact of these site mutations on lung cancer remains unclear. Therefore, this study applied the Summary data-based Mendelian Randomization (SMR) model through the integration of two GWAS datasets and four expression Quantitative Trait Loci (eQTL) datasets to identify susceptibility genes. Using this strategy, we found ten of Single Nucleotide Polymorphisms (SNPs) sites that affect the occurrence and development of lung tumors by regulating the expression of seven genes. Further analysis of the signaling pathway about these genes not only provides important clues to explain the pathogenesis of lung cancer but also has critical significance for the diagnosis and treatment of lung cancer.