Cargando…
Recent advances of nanotechnology-based tumor vessel-targeting strategies
Tumor vessels can provide oxygen and nutrition for solid tumor tissue, create abnormal tumor microenvironment (TME), and play a vital role in the development, immune escape, metastasis and drug resistance of tumor. Tumor vessel-targeting therapy has become an important and promising direction in ant...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686559/ https://www.ncbi.nlm.nih.gov/pubmed/34930293 http://dx.doi.org/10.1186/s12951-021-01190-y |
Sumario: | Tumor vessels can provide oxygen and nutrition for solid tumor tissue, create abnormal tumor microenvironment (TME), and play a vital role in the development, immune escape, metastasis and drug resistance of tumor. Tumor vessel-targeting therapy has become an important and promising direction in anti-tumor therapy, with the development of five anti-tumor therapeutic strategies, including vascular disruption, anti-angiogenesis, vascular blockade, vascular normalization and breaking immunosuppressive TME. However, the insufficient drug accumulation and severe side effects of vessel-targeting drugs limit their development in clinical application. Nanotechnology offers an excellent platform with flexible modified surface that can precisely deliver diverse cargoes, optimize efficacy, reduce side effects, and realize the combined therapy. Various nanomedicines (NMs) have been developed to target abnormal tumor vessels and specific TME to achieve more efficient vessel-targeting therapy. The article reviews tumor vascular abnormalities and the resulting abnormal microenvironment, the application of NMs in the tumor vessel-targeting strategies, and how NMs can improve these strategies and achieve multi-strategies combination to maximize anti-tumor effects. [Image: see text] |
---|