Cargando…
FCLQC: fast and concurrent lossless quality scores compressor
BACKGROUND: Advances in sequencing technology have drastically reduced sequencing costs. As a result, the amount of sequencing data increases explosively. Since FASTQ files (standard sequencing data formats) are huge, there is a need for efficient compression of FASTQ files, especially quality score...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686598/ https://www.ncbi.nlm.nih.gov/pubmed/34930110 http://dx.doi.org/10.1186/s12859-021-04516-7 |
_version_ | 1784618048054886400 |
---|---|
author | Cho, Minhyeok No, Albert |
author_facet | Cho, Minhyeok No, Albert |
author_sort | Cho, Minhyeok |
collection | PubMed |
description | BACKGROUND: Advances in sequencing technology have drastically reduced sequencing costs. As a result, the amount of sequencing data increases explosively. Since FASTQ files (standard sequencing data formats) are huge, there is a need for efficient compression of FASTQ files, especially quality scores. Several quality scores compression algorithms are recently proposed, mainly focused on lossy compression to boost the compression rate further. However, for clinical applications and archiving purposes, lossy compression cannot replace lossless compression. One of the main challenges for lossless compression is time complexity, where it takes thousands of seconds to compress a 1 GB file. Also, there are desired features for compression algorithms, such as random access. Therefore, there is a need for a fast lossless compressor with a reasonable compression rate and random access functionality. RESULTS: This paper proposes a Fast and Concurrent Lossless Quality scores Compressor (FCLQC) that supports random access and achieves a lower running time based on concurrent programming. Experimental results reveal that FCLQC is significantly faster than the baseline compressors on compression and decompression at the expense of compression ratio. Compared to LCQS (baseline quality score compression algorithm), FCLQC shows at least 31x compression speed improvement in all settings, where a performance degradation in compression ratio is up to 13.58% (8.26% on average). Compared to general-purpose compressors (such as 7-zip), FCLQC shows 3x faster compression speed while having better compression ratios, at least 2.08% (4.69% on average). Moreover, the speed of random access decompression also outperforms the others. The concurrency of FCLQC is implemented using Rust; the performance gain increases near-linearly with the number of threads. CONCLUSION: The superiority of compression and decompression speed makes FCLQC a practical lossless quality score compressor candidate for speed-sensitive applications of DNA sequencing data. FCLQC is available at https://github.com/Minhyeok01/FCLQC and is freely available for non-commercial usage. |
format | Online Article Text |
id | pubmed-8686598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-86865982021-12-20 FCLQC: fast and concurrent lossless quality scores compressor Cho, Minhyeok No, Albert BMC Bioinformatics Software BACKGROUND: Advances in sequencing technology have drastically reduced sequencing costs. As a result, the amount of sequencing data increases explosively. Since FASTQ files (standard sequencing data formats) are huge, there is a need for efficient compression of FASTQ files, especially quality scores. Several quality scores compression algorithms are recently proposed, mainly focused on lossy compression to boost the compression rate further. However, for clinical applications and archiving purposes, lossy compression cannot replace lossless compression. One of the main challenges for lossless compression is time complexity, where it takes thousands of seconds to compress a 1 GB file. Also, there are desired features for compression algorithms, such as random access. Therefore, there is a need for a fast lossless compressor with a reasonable compression rate and random access functionality. RESULTS: This paper proposes a Fast and Concurrent Lossless Quality scores Compressor (FCLQC) that supports random access and achieves a lower running time based on concurrent programming. Experimental results reveal that FCLQC is significantly faster than the baseline compressors on compression and decompression at the expense of compression ratio. Compared to LCQS (baseline quality score compression algorithm), FCLQC shows at least 31x compression speed improvement in all settings, where a performance degradation in compression ratio is up to 13.58% (8.26% on average). Compared to general-purpose compressors (such as 7-zip), FCLQC shows 3x faster compression speed while having better compression ratios, at least 2.08% (4.69% on average). Moreover, the speed of random access decompression also outperforms the others. The concurrency of FCLQC is implemented using Rust; the performance gain increases near-linearly with the number of threads. CONCLUSION: The superiority of compression and decompression speed makes FCLQC a practical lossless quality score compressor candidate for speed-sensitive applications of DNA sequencing data. FCLQC is available at https://github.com/Minhyeok01/FCLQC and is freely available for non-commercial usage. BioMed Central 2021-12-20 /pmc/articles/PMC8686598/ /pubmed/34930110 http://dx.doi.org/10.1186/s12859-021-04516-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Software Cho, Minhyeok No, Albert FCLQC: fast and concurrent lossless quality scores compressor |
title | FCLQC: fast and concurrent lossless quality scores compressor |
title_full | FCLQC: fast and concurrent lossless quality scores compressor |
title_fullStr | FCLQC: fast and concurrent lossless quality scores compressor |
title_full_unstemmed | FCLQC: fast and concurrent lossless quality scores compressor |
title_short | FCLQC: fast and concurrent lossless quality scores compressor |
title_sort | fclqc: fast and concurrent lossless quality scores compressor |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686598/ https://www.ncbi.nlm.nih.gov/pubmed/34930110 http://dx.doi.org/10.1186/s12859-021-04516-7 |
work_keys_str_mv | AT chominhyeok fclqcfastandconcurrentlosslessqualityscorescompressor AT noalbert fclqcfastandconcurrentlosslessqualityscorescompressor |