Cargando…

Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance

Cellular fate and gene expression patterns are modulated by different epigenetic factors including non-coding RNAs (ncRNAs) and chromatin organization. Both factors are dynamic throughout male germ cell differentiation on the seminiferous tubule, despite the transcriptional inactivation in the last...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheuquemán, Carolina, Maldonado, Rodrigo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686607/
https://www.ncbi.nlm.nih.gov/pubmed/34930477
http://dx.doi.org/10.1186/s40659-021-00364-0
Descripción
Sumario:Cellular fate and gene expression patterns are modulated by different epigenetic factors including non-coding RNAs (ncRNAs) and chromatin organization. Both factors are dynamic throughout male germ cell differentiation on the seminiferous tubule, despite the transcriptional inactivation in the last stages of spermatogenesis. Sperm maturation during the caput-to-cauda transit on the epididymis involves changes in chromatin organization and the soma-to-germ line transference of ncRNAs that are essential to obtain a functional sperm for fertilization and embryo development. Here, the male environment (diseases, drugs, mental stress) is crucial to modulate these epigenetic factors throughout sperm maturation, affecting the corresponding offspring. Paternal transgenerational inheritance has been directly related to sperm epigenetic changes, most of them associated with variations in the ncRNA content and chromatin marks. Our aim is to give an overview about how epigenetics, focused on ncRNAs and chromatin, is pivotal to understand spermatogenesis and sperm maturation, and how the male environment impacts the sperm epigenome modulating the offspring gene expression pattern.