Cargando…
Graph transformation for enzymatic mechanisms
MOTIVATION: The design of enzymes is as challenging as it is consequential for making chemical synthesis in medical and industrial applications more efficient, cost-effective and environmentally friendly. While several aspects of this complex problem are computationally assisted, the drafting of cat...
Autores principales: | Andersen, Jakob L, Fagerberg, Rolf, Flamm, Christoph, Fontana, Walter, Kolčák, Juraj, Laurent, Christophe V F P, Merkle, Daniel, Nøjgaard, Nikolai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686676/ https://www.ncbi.nlm.nih.gov/pubmed/34252947 http://dx.doi.org/10.1093/bioinformatics/btab296 |
Ejemplares similares
-
DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response
por: Huang, Zhijian, et al.
Publicado: (2023) -
Supervised biological network alignment with graph neural networks
por: Ding, Kerr, et al.
Publicado: (2023) -
Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing
por: Wang, Zichen, et al.
Publicado: (2020) -
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers
por: Wang, Shike, et al.
Publicado: (2021) -
Characterizing alternative splicing effects on protein interaction networks with LINDA
por: Gjerga, Enio, et al.
Publicado: (2023)