Cargando…
CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) technology has been widely applied to capture the heterogeneity of different cell types within complex tissues. An essential step in scRNA-seq data analysis is the annotation of cell types. Traditional cell-type annotation is mainly clustering the c...
Autores principales: | Wei, Ziyang, Zhang, Shuqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686678/ https://www.ncbi.nlm.nih.gov/pubmed/34252936 http://dx.doi.org/10.1093/bioinformatics/btab286 |
Ejemplares similares
-
SpatialSort: a Bayesian model for clustering and cell population annotation of spatial proteomics data
por: Lee, Eric, et al.
Publicado: (2023) -
2498: Individual patient outcome predictions using supervised learning methods
por: Roche-Lima, Abiel, et al.
Publicado: (2018) -
GAN-based data augmentation for transcriptomics: survey and comparative assessment
por: Lacan, Alice, et al.
Publicado: (2023) -
OncoThreads: visualization of large-scale longitudinal cancer molecular data
por: Harbig, Theresa A, et al.
Publicado: (2021) -
AttOmics: attention-based architecture for diagnosis and prognosis from omics data
por: Beaude, Aurélien, et al.
Publicado: (2023)