Cargando…
Improving GRN re‐construction by mining hidden regulatory signals
Inferring gene regulatory networks (GRNs) from gene expression data is an important but challenging issue in systems biology. Here, the authors propose a dictionary learning‐based approach that aims to infer GRNs by globally mining regulatory signals, known or latent. Gene expression is often regula...
Autores principales: | Shi, Ming, Shen, Weiming, Chong, Yanwen, Wang, Hong‐Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687237/ https://www.ncbi.nlm.nih.gov/pubmed/29125126 http://dx.doi.org/10.1049/iet-syb.2017.0013 |
Ejemplares similares
-
Editorial: Methods in genome, pan-genome, pan-transcriptome, and gene regulatory network (GRN) construction and analysis
por: Gupta, Parul, et al.
Publicado: (2023) -
D3GRN: a data driven dynamic network construction method to infer gene regulatory networks
por: Chen, Xiang, et al.
Publicado: (2019) -
Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation
por: Zhang, Fan, et al.
Publicado: (2016) -
LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies
por: Wang, Mingyi, et al.
Publicado: (2013) -
DynSig: Modelling Dynamic Signaling Alterations along Gene Pathways for Identifying Differential Pathways
por: Shi, Ming, et al.
Publicado: (2018)