Cargando…
Describing function‐based approximations of biomolecular systems
Mathematical methods provide useful framework for the analysis and design of complex systems. In newer contexts such as biology, however, there is a need to both adapt existing methods as well as to develop new ones. Using a combination of analytical and computational approaches, the authors adapt a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Institution of Engineering and Technology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687285/ https://www.ncbi.nlm.nih.gov/pubmed/29745902 http://dx.doi.org/10.1049/iet-syb.2017.0026 |
Sumario: | Mathematical methods provide useful framework for the analysis and design of complex systems. In newer contexts such as biology, however, there is a need to both adapt existing methods as well as to develop new ones. Using a combination of analytical and computational approaches, the authors adapt and develop the method of describing functions to represent the input–output responses of biomolecular signalling systems. They approximate representative systems exhibiting various saturating and hysteretic dynamics in a way that is better than the standard linearisation. Furthermore, they develop analytical upper bounds for the computational error estimates. Finally, they use these error estimates to augment the limit cycle analysis with a simple and quick way to bound the predicted oscillation amplitude. These results provide system approximations that can add more insight into the local behaviour of these systems than standard linearisation, compute responses to other periodic inputs and to analyse limit cycles. |
---|