Cargando…

Hilbert transform‐based time‐series analysis of the circadian gene regulatory network

In this work, the authors propose the Hilbert transform (HT)‐based numerical method to analyse the time series of the circadian rhythms. They demonstrate the application of HT by taking both deterministic and stochastic time series that they get from the simulation of the fruit fly model Drosophila...

Descripción completa

Detalles Bibliográficos
Autores principales: S., Shiju, Sriram, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Institution of Engineering and Technology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687344/
https://www.ncbi.nlm.nih.gov/pubmed/31318333
http://dx.doi.org/10.1049/iet-syb.2018.5088
Descripción
Sumario:In this work, the authors propose the Hilbert transform (HT)‐based numerical method to analyse the time series of the circadian rhythms. They demonstrate the application of HT by taking both deterministic and stochastic time series that they get from the simulation of the fruit fly model Drosophila melanogaster and show how to extract the period, construct phase response curves, determine period sensitivity of the parameters to perturbations and build Arnold tongues to identify the regions of entrainment. They also derive a phase model that they numerically simulate to capture whether the circadian time series entrains to the forcing period completely (phase locking) or only partially (phase slips) or neither. They validate the phase model, and numerics with the experimental time series forced under different temperature cycles. Application of HT to the circadian time series appears to be a promising tool to extract the characteristic information about circadian rhythms.