Cargando…

Design of dynamic genetic memory

In electronic systems, dynamic random access memory (DRAM) is one of the core modules in the modern silicon computer. As for a bio‐computer, one would need a mechanism for storage of bio‐information named ‘data’, which, in binary logic, has two levels, logical high and logical low, or in the normali...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yu‐Jia, Lin, Chun‐Liang, Li, Wei‐Xian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Institution of Engineering and Technology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687422/
https://www.ncbi.nlm.nih.gov/pubmed/29125127
http://dx.doi.org/10.1049/iet-syb.2017.0021
Descripción
Sumario:In electronic systems, dynamic random access memory (DRAM) is one of the core modules in the modern silicon computer. As for a bio‐computer, one would need a mechanism for storage of bio‐information named ‘data’, which, in binary logic, has two levels, logical high and logical low, or in the normalised form, ‘1’ and ‘0’. This study proposes a possible genetic DRAM based on the modified electronic configuration, which uses the biological reaction to fulfil an equivalent RC circuit constituting a memory cell. The authors implement fundamental functions of the genetic DRAM by incorporating a genetic toggle switch for data hold. The results of simulation verify that the basic function can be used on a bio‐storage module for the future bio‐computer.