Cargando…

RT-qPCR half-reaction optimization for the detection of SARS-CoV-2

INTRODUCTION: The main laboratory test for the diagnosis of coronavirus disease 2019 (COVID-19) is the reverse transcription real-time polymerase chain reaction (RT-qPCR). However, RT-qPCR is expensive because of the number of tests required. This study aimed to evaluate an alternative to the RT-qPC...

Descripción completa

Detalles Bibliográficos
Autores principales: Wink, Priscila Lamb, Volpato, Fabiana, de Lima-Morales, Daiana, Paiva, Rodrigo Minuto, Willig, Julia Biz, Bock, Hugo, de Paris, Fernanda, Barth, Afonso Luís
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sociedade Brasileira de Medicina Tropical - SBMT 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687447/
https://www.ncbi.nlm.nih.gov/pubmed/34932760
http://dx.doi.org/10.1590/0037-8682-0319-2020
Descripción
Sumario:INTRODUCTION: The main laboratory test for the diagnosis of coronavirus disease 2019 (COVID-19) is the reverse transcription real-time polymerase chain reaction (RT-qPCR). However, RT-qPCR is expensive because of the number of tests required. This study aimed to evaluate an alternative to the RT-qPCR approach for the detection of sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is half of the total volume currently recommended by the US Centers for Disease Control and Prevention. METHODS: The analytical limit of detection (LoD) and the reaction efficiency using half volumes of the RT-qPCR assay were evaluated for the N1 and N2 regions using a synthetic control RNA. A panel of 76 SARS-CoV-2-positive and 26 SARS-CoV-2-negative clinical samples was evaluated to establish clinical sensitivity and specificity. RESULTS: The RT-qPCR assay efficiency was 105% for the half and standard reactions considering the N2 target and 84% (standard) and 101% (half) for N1. The RT-qPCR half-reaction LoD for N1 and N2 were 20 and 80 copies/µL, respectively. The clinical sensitivity and specificity were 100%. The half reaction presented a decrease of up to 5.5 cycle thresholds compared with standard RT-qPCR. CONCLUSIONS: The use of the RT-qPCR half-reaction proved feasible and economic for the detection of SARS-CoV-2 RNA.