Cargando…

Simple decision rules to predict local surges in COVID-19 hospitalizations during the winter and spring of 2022

Low rates of vaccination, emergence of novel variants of SARS-CoV-2, and increasing transmission relating to seasonal changes leave many U.S. communities at risk for surges of COVID-19 during the winter and spring of 2022 that might strain hospital capacity, as in previous waves. The trajectories of...

Descripción completa

Detalles Bibliográficos
Autores principales: Yaesoubi, Reza, You, Shiying, Xi, Qin, Menzies, Nicolas A., Tuite, Ashleigh, Grad, Yonatan H., Salomon, Joshua A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687467/
https://www.ncbi.nlm.nih.gov/pubmed/34931196
http://dx.doi.org/10.1101/2021.12.13.21267657
Descripción
Sumario:Low rates of vaccination, emergence of novel variants of SARS-CoV-2, and increasing transmission relating to seasonal changes leave many U.S. communities at risk for surges of COVID-19 during the winter and spring of 2022 that might strain hospital capacity, as in previous waves. The trajectories of COVID-19 hospitalizations during this period are expected to differ across communities depending on their age distributions, vaccination coverage, cumulative incidence, and adoption of risk mitigating behaviors. Yet, existing predictive models of COVID-19 hospitalizations are almost exclusively focused on national- and state-level predictions. This leaves local policymakers in urgent need of tools that can provide early warnings about the possibility that COVID-19 hospitalizations may rise to levels that exceed local capacity. In this work, we develop simple decision rules to predict whether COVID-19 hospitalization will exceed the local hospitalization capacity within a 4- or 8-week period if no additional mitigating strategies are implemented during this time. These decision rules use real-time data related to hospital occupancy and new hospitalizations associated with COVID-19, and when available, genomic surveillance of SARS-CoV-2. We showed that these decision rules present reasonable accuracy, sensitivity, and specificity (all ≥80%) in predicting local surges in hospitalizations under numerous simulated scenarios, which capture substantial uncertainties over the future trajectories of COVID-19 during the winter and spring of 2022. Our proposed decision rules are simple, visual, and straightforward to use in practice by local decision makers without the need to perform numerical computations.