Cargando…
Privacy-preserving breast cancer recurrence prediction based on homomorphic encryption and secure two party computation
Protecting patients’ privacy is one of the most important tasks when developing medical artificial intelligence models since medical data is the most sensitive personal data. To overcome this privacy protection issue, diverse privacy-preserving methods have been proposed. We proposed a novel method...
Autores principales: | Son, Yongha, Han, Kyoohyung, Lee, Yong Seok, Yu, Jonghan, Im, Young-Hyuck, Shin, Soo-Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687538/ https://www.ncbi.nlm.nih.gov/pubmed/34928973 http://dx.doi.org/10.1371/journal.pone.0260681 |
Ejemplares similares
-
Privacy-preserving approximate GWAS computation based on homomorphic encryption
por: Kim, Duhyeong, et al.
Publicado: (2020) -
Privacy-preserving cancer type prediction with homomorphic encryption
por: Sarkar, Esha, et al.
Publicado: (2023) -
A Review of Homomorphic Encryption for Privacy-Preserving Biometrics
por: Yang, Wencheng, et al.
Publicado: (2023) -
Privacy-Preserving IoT Data Aggregation Based on Blockchain and Homomorphic Encryption
por: Loukil, Faiza, et al.
Publicado: (2021) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022)