Cargando…
DeepCME: A deep learning framework for computing solution statistics of the chemical master equation
Stochastic models of biomolecular reaction networks are commonly employed in systems and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. For such models, the Kolmogorov’s forward equation is called the chemical maste...
Autores principales: | Gupta, Ankit, Schwab, Christoph, Khammash, Mustafa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687598/ https://www.ncbi.nlm.nih.gov/pubmed/34879062 http://dx.doi.org/10.1371/journal.pcbi.1009623 |
Ejemplares similares
-
Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains
por: Kazeev, Vladimir, et al.
Publicado: (2014) -
Analysis of Stochastic Strategies in Bacterial Competence: A Master Equation Approach
por: Dandach, Sandra H., et al.
Publicado: (2010) -
A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks
por: Gupta, Ankit, et al.
Publicado: (2014) -
Delay chemical master equation: direct and closed-form solutions
por: Leier, Andre, et al.
Publicado: (2015) -
Approximating solutions of the Chemical Master equation using neural networks
por: Sukys, Augustinas, et al.
Publicado: (2022)