Cargando…

Exploring the Molecular Mechanism of lncRNA–miRNA–mRNA Networks in Non-Syndromic Cleft Lip with or without Cleft Palate

BACKGROUND: Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common craniofacial birth defect. Growing evidence has demonstrated the competing endogenous RNA (ceRNA) hypothesis has played a role in the pathogenesis of NSCL/P. Here, we identified the important lncRNAs in NSCL/P and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiangpu, Guo, Siyuan, Zhou, Xinli, Wang, Yupei, Zhang, Ting, Chen, Renji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687630/
https://www.ncbi.nlm.nih.gov/pubmed/34938111
http://dx.doi.org/10.2147/IJGM.S339504
Descripción
Sumario:BACKGROUND: Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common craniofacial birth defect. Growing evidence has demonstrated the competing endogenous RNA (ceRNA) hypothesis has played a role in the pathogenesis of NSCL/P. Here, we identified the important lncRNAs in NSCL/P and constructed a ceRNA regulatory network to predict their underlying functional mechanism. METHODS: Total RNA isolated from the peripheral blood samples were analyzed by the Human Clariom D Affymetrix platform and differentially expressed genes (DEGs) were identified. Using the limma package in R software, DEGs in the expression profile of GSE42589 were identified from Gene Expression Omnibus (GEO) database. Co-differentially expressed lncRNAs (co-DElncRNAs) were used to predict the microRNAs that may bind to them. Co-differentially expressed mRNAs (co-DEmRNAs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The hub genes were screened using the cytohubba plug-in in Cytoscape. A ceRNA network was built to investigate the molecular mechanism underlying the etiology of NSCL/P. The expression levels of lncRNAs, miRNAs, and mRNAs in the network were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: We found 116 DElncRNAs and 2955 DEmRNAs from the GSE42589 dataset, and 2626 DElncRNAs and 2771 DEmRNAs from the Human Clariom D gene chip. A network of co-DEmRNAs containing 3712 edges and 621 nodes were identified by PPI analysis. A ceRNA regulatory network comprising lncRNA USP17L6P, hsa-miR-449c-5p, and MYC was established. qRT-PCR results revealed significantly lower expression levels of lncRNA USP17L6P and c-Myc in NSCL/P tissues, while the expression level of hsa-miR-449c-5p was higher as compared to control samples (p < 0.05). CONCLUSION: The identified lncRNAs and the established ceRNA regulatory network provide novel insight into the pathogenesis of NSCL/P, therefore hold great promise in NSCL/P management in clinical practice.