Cargando…
Comparison of the Meta-Active Machine Learning Model Applied to Biological Data-Driven Experiments with Other Models
Currently, many methods that could estimate the effects of conditions on a given biological target require either strong modelling assumptions or separate screens. Traditionally, many conditions and targets, without doing all possible experiments, could be achieved by driven experimentation or sever...
Autor principal: | Wang, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687783/ https://www.ncbi.nlm.nih.gov/pubmed/34938423 http://dx.doi.org/10.1155/2021/8014850 |
Ejemplares similares
-
Retracted: Comparison of the Meta-Active Machine Learning Model Applied to Biological Data-Driven Experiments with Other Models
por: Healthcare Engineering, Journal of
Publicado: (2023) -
Editorial: Systems biology and data-driven machine learning-based models in personalized cardiovascular medicine
por: Hueso, Miguel, et al.
Publicado: (2023) -
Assessment and Optimization of Explainable Machine Learning Models Applied to Transcriptomic Data
por: Zhao, Yongbing, et al.
Publicado: (2022) -
Dirty engineering data-driven inverse prediction machine learning model
por: Lee, Jin-Woong, et al.
Publicado: (2020) -
Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type
por: Qin, Yifan, et al.
Publicado: (2022)