Cargando…

Zishen Qingre Tongluo Formula Improves Renal Fatty Acid Oxidation and Alleviated Fibrosis via the Regulation of the TGF-β1/Smad3 Signaling Pathway in Hyperuricemic Nephrology Rats

Hyperuricemia, an independent risk factor for ensuing chronic kidney disease (CKD), contributed to tubulointerstitial fibrosis and insufficiency of renal fatty acid oxidation. Many studies have shown that renal fatty acid oxidation dysfunction is related to the TGF-β1/Smad3 signaling pathway. We exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Peng, Wang, Chen, Wang, Yun, Zhang, Honghong, Liu, Baoli, Qiu, Xinping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687854/
https://www.ncbi.nlm.nih.gov/pubmed/34938805
http://dx.doi.org/10.1155/2021/2793823
Descripción
Sumario:Hyperuricemia, an independent risk factor for ensuing chronic kidney disease (CKD), contributed to tubulointerstitial fibrosis and insufficiency of renal fatty acid oxidation. Many studies have shown that renal fatty acid oxidation dysfunction is related to the TGF-β1/Smad3 signaling pathway. We experimented the effects of Zishen Qingre Tongluo Formula (ZQTF) on the adenine/yeast-induced HN rats and uric acid-induced renal mouse tubular epithelial cells (mTECs), determined whether this effect was related to the TGF-β1/Smad3 signaling pathway, and further investigated the relationship between this effect and renal fatty acid oxidation. Rats were given intraperitoneally with adenine (100 mg/kg) and feed chow with 10% yeast for 18 days and then received ZQTF (12.04 g/kg/day) via intragastric gavage for eight weeks. The TGF-β1/Smad3 signaling pathway and renal fatty acid oxidation protein were detected by using western blotting, real-time PCR, and immunohistochemistry staining. mTECs induced by UA were used to investigate the relationship between the TGF-β1/Smad3 signaling pathway and renal fatty acid oxidation. After treatment with ZQTF, levels of UA, 24 h UTP, BUN, and Scr were significantly decreased and histologic injuries were visibly ameliorated in HN rats. Western blotting, real-time PCR, and immunohistochemistry staining revealed that PGC-1α, PPARγ, and PPARα significantly increased, and fibronectin, collagen 1, and P-Smad3 significantly decreased in HN rats and UA-induced mTECs after ZQTF treatment. SIS3 (a specific inhibitor of Smad3) treatment significantly increased the expressions of PGC-1α, PPARγ, and PPARα and decreased the expressions of fibronectin, collagen 1, and P-Smad3 in UA-induced mTECs. Our study demonstrated that ZQTF exhibited renoprotective effects by promoting renal fatty acid oxidation via the regulation of the TGF-β1/Smad3 signaling pathway. Thus, the present results indicated that ZQTF was a novel antifibrotic strategy for hyperuricemic nephropathy.