Cargando…
New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts
Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687855/ https://www.ncbi.nlm.nih.gov/pubmed/34897182 http://dx.doi.org/10.2183/pjab.97.028 |
_version_ | 1784618262083928064 |
---|---|
author | TSUBOI, Masafumi HIRABAYASHI, Yusuke |
author_facet | TSUBOI, Masafumi HIRABAYASHI, Yusuke |
author_sort | TSUBOI, Masafumi |
collection | PubMed |
description | Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive. Recent advances in the development of live imaging and serial scanning electron microscopy (sSEM) analysis have revealed that the neuronal ER is a highly dynamic organelle with compartment-specific structures. sSEM studies also revealed that the ER forms contacts with other membranes, such as the mitochondria and plasma membrane, although little is known about the functions of these ER-membrane contacts. In this review, we discuss the mechanisms and physiological roles of the ER structure and ER-mitochondria contacts in synaptic transmission and plasticity, thereby highlighting a potential link between organelle ultrastructure and neuronal functions. |
format | Online Article Text |
id | pubmed-8687855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Japan Academy |
record_format | MEDLINE/PubMed |
spelling | pubmed-86878552021-12-28 New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts TSUBOI, Masafumi HIRABAYASHI, Yusuke Proc Jpn Acad Ser B Phys Biol Sci Review Mammalian neurons are highly compartmentalized yet very large cells. To provide each compartment with its distinct properties, metabolic homeostasis and molecular composition need to be precisely coordinated in a compartment-specific manner. Despite the importance of the endoplasmic reticulum (ER) as a platform for various biochemical reactions, such as protein synthesis, protein trafficking, and intracellular calcium control, the contribution of the ER to neuronal compartment-specific functions and plasticity remains elusive. Recent advances in the development of live imaging and serial scanning electron microscopy (sSEM) analysis have revealed that the neuronal ER is a highly dynamic organelle with compartment-specific structures. sSEM studies also revealed that the ER forms contacts with other membranes, such as the mitochondria and plasma membrane, although little is known about the functions of these ER-membrane contacts. In this review, we discuss the mechanisms and physiological roles of the ER structure and ER-mitochondria contacts in synaptic transmission and plasticity, thereby highlighting a potential link between organelle ultrastructure and neuronal functions. The Japan Academy 2021-12-10 /pmc/articles/PMC8687855/ /pubmed/34897182 http://dx.doi.org/10.2183/pjab.97.028 Text en © 2021 The Japan Academy https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review TSUBOI, Masafumi HIRABAYASHI, Yusuke New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts |
title | New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts |
title_full | New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts |
title_fullStr | New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts |
title_full_unstemmed | New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts |
title_short | New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts |
title_sort | new insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687855/ https://www.ncbi.nlm.nih.gov/pubmed/34897182 http://dx.doi.org/10.2183/pjab.97.028 |
work_keys_str_mv | AT tsuboimasafumi newinsightsintotheregulationofsynaptictransmissionandplasticitybytheendoplasmicreticulumanditsmembranecontacts AT hirabayashiyusuke newinsightsintotheregulationofsynaptictransmissionandplasticitybytheendoplasmicreticulumanditsmembranecontacts |