Cargando…
Pan-cancer classification by regularized multi-task learning
Classifying pan-cancer samples using gene expression patterns is a crucial challenge for the accurate diagnosis and treatment of cancer patients. Machine learning algorithms have been considered proven tools to perform downstream analysis and capture the deviations in gene expression patterns across...
Autores principales: | Hossain, Sk Md Mosaddek, Khatun, Lutfunnesa, Ray, Sumanta, Mukhopadhyay, Anirban |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688544/ https://www.ncbi.nlm.nih.gov/pubmed/34930937 http://dx.doi.org/10.1038/s41598-021-03554-8 |
Ejemplares similares
-
A comprehensive analysis on preservation patterns of gene co-expression networks during Alzheimer’s disease progression
por: Ray, Sumanta, et al.
Publicado: (2017) -
Discovering key transcriptomic regulators in pancreatic ductal adenocarcinoma using Dirichlet process Gaussian mixture model
por: Hossain, Sk Md Mosaddek, et al.
Publicado: (2021) -
Preservation affinity in consensus modules among stages of HIV-1 progression
por: Mosaddek Hossain, Sk Md, et al.
Publicado: (2017) -
DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation
por: Islam, Sk Mazharul, et al.
Publicado: (2021) -
A Regularized Multi-Task Learning Approach for Cell Type Detection in Single-Cell RNA Sequencing Data
por: Upadhyay, Piu, et al.
Publicado: (2022)