Cargando…

From cold-blooded reptiles to embryological remnants: Persistent myocardial sinusoids

In nature, basically 2 types of myocardial vascular patterns exist: the sinusoidal and the coronary type. In the sinusoidal type, the sinusoid is completely fed by blood coming directly from the ventricle through a spongy sinusoidal network. This pattern is found in cold-blooded animals and in the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Winkel, David Jean, Gehweiler, Julian, Sommer, Gregor, Bremerich, Jens, Zellweger, Michael J, Haaf, Philip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688969/
https://www.ncbi.nlm.nih.gov/pubmed/34976257
http://dx.doi.org/10.1016/j.radcr.2021.11.057
Descripción
Sumario:In nature, basically 2 types of myocardial vascular patterns exist: the sinusoidal and the coronary type. In the sinusoidal type, the sinusoid is completely fed by blood coming directly from the ventricle through a spongy sinusoidal network. This pattern is found in cold-blooded animals and in the early embryologic development of human (warm-blooded) hearts. A 61-year-old man with atrial fibrillation developed severe tachymyopathy with a severely reduced left-ventricular ejection fraction (LVEF) of 20%. The patient had no history of prior heart surgery or other cardiac interventions. He was referred for a computed tomography (CT) scan for assessment of pulmonary vein anatomy prior to their isolation. Incidentally, a focal myocardial defect of the midventricular infero-septal wall with tail-like extension into the right ventricular cavity was detected. In a cardiac magnetic resonance (CMR) scan there was no evidence of a myocardial infarction or fibrosis. In the absence of a ventricular septal defect by CT, CMR and echocardiography the diagnosis of a persistent myocardial sinusoid was evident. In this case, we used state-of-the art methods for pathology visualization, illustrating the effectiveness of CT and CMR in the precise detection and differential diagnosis of myocardial anomalies including a multi-coloured 3D-printed model that may further enhance visuospatial appreciation of those anomalies.